
J .  Fluid Mech. (1972), vol. 56, part 3, pp .  481-496 

Printed in Great Britain 
48 1 

Three-dimensional MHD duct 
flows with strong transverse magnetic fields. 

Part 4. Fully insulated, variable-area rectangular 
ducts with small divergences 

By J. S. WALKER 
Department of Theoretical and Applied Mechanics, University of Illinois 

A N D  G. S .  S. LUDFORD 
Department of Theoretical and Applied Mechanics, Cornell University 

(Received 10 August 1972) 

Part 3 of this study treats a prototype with insulating side walls at  z = & 1 for 
all x and insulating top and bottom walls a t  y = & a for x < 0 and at  y = & (a + bz) 
for x > 0, where the applied magnetic field is in the y direction and the flow is in 
the x direction. In  the diverging portion (x > 0 )  of this duct, the entire mass flux 
is carried by high-velocity jets adjacent to the side walls, while the fluidelsewhere 
is stagnant. In  the constant-area portion (x < 0) ,  the fully developed flow is 
severely disturbed as it approaches the join at  x = 0,  and high-velocity jets occur 
even before the top and bottom walls begin to diverge. The analysis presented 
in Part 3 is not valid in the limit b + 0, and the object of this paper is to reconcile 
the stagnant core flow for b + 0 with the fully developed flow forb = 0. Conditions 
are such that inertia forces are negligible. 

The fist transitional stage occurs when 1 B b 9 M-i,  where M is the (large) 
Hartmann number. The upstream disturbance disappears, and downstream each 
of the O(M-4) side-wall boundary layers splits into an O(b-lM-3) outer layer and 
an O ( M - 4 )  inner layer. The fluid outside these layers is still stagnant and an 
O(bM3) velocity in the outer sublayers accounts for the mass flux. The viscous 
inner sublayers reduce the velocity in the outer sublayers to zero at  the side walls. 

The second transitional stage occurs when b = O(M-h). The outer sublayers 
spread across the entire duct so that none of the fluid is stagnant, and an O(1) 
core velocity accounts for the mass flux. This analysis is valid no matter how 
small b becomes, and as b + 0 the fully developed solution is recovered every- 
where. 

1. Introduction 
In  Part 3, Walker, Ludford & Hunt (1972) analysed the flow in a prototype 

variable-area rectangular duct with insulating walls and developed a procedure 
for extending this analysis to general fully insulated ducts. This prototype has 
parallel side walls at  z = & 1 for all x and top and bottom walls at y = +_a for 
x < 0 and at y = -I (a  + bx) for x > 0,  where the applied magnetic field is in the 
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FIGURE 1. Duct with insulating walls. 

y direction and the centre-line of the duct is taken as the x axis (see figure 1). 
For x > 0, high-velocity jets within thin boundary layers adjacent to the side 
walls account for the entire mass flux. The fluid outside of these layers is stagnant 
because the electric current for the Lorentz force needed to drive it across the 
strong magnetic field is blocked by the insulating side walls. The high-velocity 
jets are held against the side walls by Lorentz forces which are produced by 
electric currents flowing in the 1. 
At the join (x = O ) ,  these current lines continue back into the side layers in the 
constant-area portion (x < 0 )  and remain within these layers sufficiently far 
upstream for the current flux to be redistributed in the y direction. The electrical 
circuit is closed by a plane potential current flow (which is uniform in the y direc- 
tion) across the constant-area portion of the duct. As x -+ - co, the high-velocity 
side layers disappear and the fully developed flow in a constant-area insulated 
rectangular duct is recovered (Shercliff 1953; Roberts 19671, with the non- 
dimensional velocity equal to one everywhere except near the walls. It is the 
currents in the side layers near x = 0 which produce the Lorentz forces drawing 
fluid into these layers. In  other words, the fully developed flow approaching the 
join is severely disturbed and high-velocity jets adjacent to the side walls occur 
even before the divergence begins a t  x = 0. A free shear layer across the section 
x = 0 absorbs whatever mass flux has not been drawn into the side layers upstream 
and delivers half of it to each of the downstream side layers, so that each carries 
half of the total flux. Some streamlines and current lines in a y section of the duct 
are sketched in figure 2 (a) .  The fraction of the total flux carried by the upstream 
side layers as they enter x = 0- reflects the severity of the disturbance in the 
constant-area portion; it tends to zero as b approaches zero, though the analysis 
presented in Part 3 is not valid in this limit. 

For b = 0, we have a constant-area duct for all x and there is fully developed 
flow everywhere. To complete the study of fully insulated variable-area 
rectangular ducts, we must show how the solution presented in Part 3, with 

x direction within the side layers a t  z = 
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its high-velocity side layers, evolves into the radically different fully developed 
solution as b -+ 0. First we shall treat the two transitional stages involved between 
b = O(1) and b = 0, namely 1 B b B M-4 and b = O(M-4), where M is the 
Hartmann number. Then we shall extend these two solutions to general, slowly 
varying, fully insulated, rectangular ducts. 

In  the first transitional stage 1 B b % M-4 (see 9 3), the upstream high-velocity 
jets disappear and the fully developed flow in the constant-area portion (x < 0 )  
remains undisturbed until it enters the free shear layer at the join. Each of the 
downstream side layers splits into an inner and an outer sublayer. Half the total 
mass flux is now carried by each of the outer sublayers, whose thickness has 
grown by a factor b-I, so that the velocity needed to carry the mass flux has 
decreased by a factor b. The viscous inner sublayer lies between the outer sub- 
layer and the side wall, reducing the velocity in the former to zero at the latter. 
The high-velocity jets are still held against the side walls by Lorentz forces 
produced by electric currents flowing along the duct within the outer sublayers, 
but now these currents are uniform in the y direction. Upstream, the electrical 
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circuit is closed by a plane potential current flow from a current source a t  x = 0, 
z = - 1 to a current sink a t  x = 0,  z = + 1. The role of the free shear layer remains 
essentially the same. Several streamlines and current lines in a y section of this 
duct are sketched in figure 2 (b) .  

In  the second transitional stage b = O(M-i) (see fj 4), the outer sublayers have 
spread across the entire diverging portion of the duct, so that none of the fluid 
is stagnant and the mass flux is carried by O(1) velocities everywhere. The flow 
in the diverging portion is not constant with z ,  the variations being maintained 
by currents flowing in the positive-x direction for z > 0 and in the negative-x 
direction for z < 0. The electrical circuit is once again closed in the constant- 
area portion by a plane potential current flow, but now current flows out of the 
free shear layer everywhere for z < 0 and into it everywhere for z > 0. Figure 2 (c) 
ehows a sketch of several streamlines and current lines in a y section of this duct. 
The analysis for this transitional stage is valid no matter how small b becomes. 
As b -+ 0 ,  the downstream flow becomes constant with x (as well as x and y), 
the x, z circulation of current disappears and fully developed flow is recovered 
everywhere. 

In  Part 3 the extension of the analysis for the prototype to a rectangular duct 
with insulating walls at z = t- 1 and y = i-f(z) involves an elaborate numerical 
procedure which ignores’the effects of wall curvature. When If’(x)l < 1, the 
flow is locally identical to that in the prototype with b = f’(x), and the analysis 
presented here in §§ 3 and 4 is easily extended to general, slowly varying, fully 
insulated, rectangular ducts (§ 5). The solutions are initially given for the proto- 
type rather than for the general duct in order to illustrate the basic phenomena 
in the simplest possible context and to provide a direct comparison with the 
results of Part 3. 

2. General considerations 
If the induced magnetic field and the fluid inertia are negligible, the non- 

dimensional equations governing the steady flow of an electrically conducting 
liquid of uniform properties under the action of a transverse magnetic field 
B, = Boy are 

a2$/ay2 = M-2V4$, a v p y  = V2h, ahlay = M - 2 V 2 ~ ,  (1  a, b, C) 

( I  a, e) = - a $ p z  - ah/& + M - 2 V 2 ~ ,  w = a$/ax - ah/az + M - 2 V 2 ~ ,  

j, = ah/& - M - 2 V 2 ~ ,  j ,  = a$/@, j, = - ah/& + M - V 2 u  (1 f, 9,  h )  

(see Part 3). Here u, v and w are the components of the fluid velocity (see figure I ) ,  
j,, j, and j ,  are the components of the electric current density, $ is the electric 
potential, h is the pressure (referred to the Characteristic Lorentz force per unit 
area vU0 B$ d )  and 

M = Bod(cT/y)-+ 

is the Hartmann number. Half the distance between the parallel side walls of our 
prototypic duct has been used as the characteristic length d and the average 
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velocity at some upstream section (x < 0 )  has been used as the characteristic 
velocity U,. Thus 

( 2 )  
a for x < 0, 
a+bx for x > 0. 

~ ( x ,  y, z )  dy dz = 4a, where f(x) = 

The boundary conditions 

v = 0, j, = k,f'(x)jz at y = +f(x), (3a)  

v = o ,  j , = O  at z = k 1, (3b) 

and the governing equations (1) form a homogeneous problem whose solution is 
normalized by the mass-flux condition (2). 

The Hartmann number is the only parameter in this boundary-value problem 
and under the assumption that M 8 1 the flow region may be divided into a central 
core in the constant-area portion of the duct (x < 0) ,  another core in the diverging 
portion (x > 0 ) ,  a free shear layer across the join (x = 0) and thin boundary layers 
in the fluid adjacent to the duct walls. The boundary layers at y = k f ( x )  are the 
well-known Hartmann layers, which have a locally determined exponential 
structure matching the core variables provided that the latter satisfy the 
Hartmann conditions 

v F f 'U = O(M-l), 

a t  y = +Jx) (see Part 3). 
In  Part 3, the key variables in every subregion of the flow were the 0 ( 1 )  

electric potential and the O(M-8) pressure, and each of these served as a special 
type of stream function for the O(1) mass flux and the O(M-4) electric current 
flux respectively. Thus the jump in q5 across the side layer at z = - 1 at some 
y level and some x section was equal to the mass flux being carried by the layer 
a t  that level, 

For small values of b, these two variables play the same fundamental roles, 
namely, giving the leading terms in the expansions for q5 and h for both transi- 
tional stages. The order of magnitude of any other variable in any subregion of 
the flow will be determined from the order of magnitude of the derivatives in this 
subregion and the relationship given by the governing equations (1) between 
the variable and the key functions g5 and h. 

3. Intermediate slope: 1 B b B 1M-t 
When b is much less than one but much greater than M-4, the appropriate 

small parameters to be taken as independent are b-lM-8 and b. The various flow 
subregions for this transitional stage are shown in figure 3 and the orders of 
magnitude of the x and z derivatives in each subregion are given in table 1. Note 
that each of these subregions is separated from the top and bottom walls by 
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Subregion 

(1) Downstream core 
(2) Downstream outer sublayer 
(3) Downstream inner sublayer 
(4) Upstream core 
(5) Upstream side layer 
(6) Free shear layer 
(7) Outer intersection 
(8) Inner intersection 

a p  
1 
bM* 
M i  
1 
M t  
1 
bM* 
M 6 

TABLE 1. Order of magnitude of L and z derivatives in each 
subregion of the flow for an intermediate slope 

Hartmann layers of thickness of U(M-l) and that these layers will be taken ca,re 
of by applying Hartmann conditions a t  y = & f(x) to the variables in each sub- 
region. We write q5 and h as double expansions in the two small parameters where 
the leading terms are of O( 1) and O(M-*) respectively: 

q5 = p . 0 )  + b-lJf-*q5Co> 1) f b-ZM-lq5(0, 2) + . . . 
+ b p . 0 )  + J f - t p  1) + 0-1M-1 4 (L2) +... 
+ b2#(2. 0) + bJ4-Bqy2.1) + M-14(2,2) + . . . , 

F, = J4-Bh(131) + b-lM-lh(L2) + . . . 
+ bM-WJ.  1) + M-lh(2,2) + . . . . 

Note that, as b approaches one, all the terms in a given column in either expansion 
sum to give a single term in the one-parameter expansions which were used in 
Part 3. The other variables may be much larger than one in subregions with 
large derivatives so we must use expansions such as 

w = M3,(-1, -1) + b-lw(-l, 0) + b-2M-*&l, 1) + ... 

+ bJgtw(O, -1) + w(0,O) + b-lJf-3wt0, 1) + ... 
+ b2M*W(1, -1) + bw(l, 0) + M-lw!l, 1) + ... . 
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In the downstream core 1, the substitution X = bx compresses the z 
co-ordinate so that all derivatives are O(1). On satisfying equations (1)) the 
leading terms in the core expansions are found to be given by 

$p) = yQ+Y, u y )  = -y(a!2/az)-aY/az, 

viO>O) = G , w p )  = yan/ax+ay/ax, hp.1) = H ,  

*(1,1) = aH/az, j c O , O )  = Q j(',l) = - aH/ax ,  321 Y l  3 21 

where $2, Y, G and H are integration functions of X and z. We shall also need two 
higher order terms, which are given by 

h 

2)(1,0) = G j ( 2 , l )  = 
1 2 11 

in terms of two more integration functions of X and z .  The Hartmann conditions 
which these variables must satisfy are 

L O )  - vlo,oo' = v1 +u1 J Y l  .?Ill f3Z1 - at y = k ( a + X ) ,  ( 0 , O )  = . ( O , O )  = -(2,1) - '(1.1) - 0 

and these conditions are simply that Q, G, h and & are zero while Y and H are 
functions of X only. Thus the O( I )  velocities vanish and as far as the O( 1)  mass 
flux is concerned, the core is stagnant. The minimum dissipation theorem implies 
that \I' is also zero, so that the only non-zero core variables are 

hi1*1)(X) and jLT1) = - dh(1.1) 
1 

which will be determined by matching with the outer sublayer. 
Since the flow is symmetric in x ,  we need only consider the downstream outer 

sublayer 2 at x = - 1, where we use < = bMJ(x+ 1) to stretch the local z 
co-ordinate and X = bx to compress the x co-ordinate. On satisfying equations 
( I ) ,  the leading terms are given by 

$p' = yQ+Y, up,-l) = - Y aQpt - a w t ,  
vp) = y a w l a t 2  + G, w p )  = y aqax + ay/ax - aH/at, 
hi1.1) = H jg;") = aH/at, jF'0) = fi ) j ( 2 , l )  22 = -aH/aX, 

where Q, Y, H and G are unknown integration functions of X and t in the outer 
sublayer. We shall alsoneed they component of the O(b2) current:jFiO) = h ( X ,  5). 
In  order to satisfy the Hartmann boundary conditions, 

up, -1) - * ( O , O )  - ' ( 2 , O )  - * ( L O )  + a (0, -')/at = 0 $, -1) at = (a + x) -312 -312 +3zz - UZ 7 

so Q, G and fi must be zero, while Y and H must satisfy 

a2Y/at2 + aH/ag = (a  + X )  P H / a y  + a Y / a g  = 0. 

The solution which matches the core solution as 6 -+ co is 

Y = 9 e x p [ - t ( a + X ) - 4 ] ,  H = h~1.1)+9(a+X)-4exp[- t (a+X)-B],  

where F ( X )  and h f . l ) (X)  will be determined by matching with theinner sublayer. 
The viscous inner sublayer 3 at z = - 1 satisfies the no-slip boundary condition 

at the wall and matches the outer sublayer. Since this sublayer does not carry 
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any O( 1) mass flux or O(M-4) current flux, there are no variations in the O( 1) 
electric potential or 0(M-3)  pressure across it. Thus we have 

= 9 h&1.1, = hp.1) + 9 ( a  + X)-J 

throughout the inner sublayer. When the local z co-ordinate is stretched by 
introducing 5 = M*(z + 1) = b-lt, the governing equations ( 1 )  together with the 
matching yield several additional simple results: 

(4a) 

(4b, c )  

h&2> 1) = h'2,l) 2 (X,Y,O)-<F(a+X)-l, 

w y )  = d.F/dX + 9 ( a  + X)-1, j g p  = - 9-(a + X)-l. 

Since  must be zero at  the side wall, (4b)  determines 9 to within anintegra- 

9 = c(a+X)-l, tion constant, 

so that the x velocity in the outer sublayer is given by 

up-" = c(a + x)-% exp [ - [ (a  + X)-&].  

Since this sublayer carries half the total mass flux, the flux condition ( 2 )  de- 
termines c: 

so that c = a. 
The boundary-value problem governing q 5 h 1 9  O) is decoupled from the one 

governing v&l,-l) and hA3~l). As we shall see, the former determines the core 
pressure h y ~ l ) ,  while the latter does not affect the solution in the other subregions 
and will not be treated here. Equation (1 a )  becomes 

a24LLO)/ay2 = a4$&LO)/a<4 (5a) 

aq5p'/a< = 0, a34','.0)/ac3 = - dh'1.1) /ax at <=  0. ( 5 b )  

a$i1s0)/ay T iY+L1,O)/ac2 = o a t  y = 5 (a + X ) ,  ( 5 c )  

$hl,O) = $f*O)(X, y, 0) - a<(. +XI-% as < -+ 00. ( 5 4  

and the side-wall boundary conditions (3 b )  become 

The Hartmann conditions are 

while matching with the outer sublayer gives 

In order to match the inner and outer sublayers, we set 6 = b< in a given outer- 
sublayer expansion, expand each term as a power series in b, regroup terms to 
form a new double expansion whose coefficient functions are independent of b 
and M ,  and equate the resulting expansion term by term to the corresponding 
inner-sublayer expansion in the limit [ -+ co. The unknown functions h&2.1)(X, y, 0) 
and q5!$o)(X, y, 0) appear in the solutions for hk2,1) and $kl*o) respectively. These 
higher order terms could easily be determined by extending this analysis beyond 
the leading term in each expansion. This extension is not given here because these 
functions are merely integration functions of X and y which play no significant 
role in our first-order solution. 
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In order to determine hl1J) we integrate (5a)  over the semi-infinite[strip 
IyI 6 a + X ,  0 < 5 < co, insist that the velocity uLo*-l) be continuous at  the 
corners, and introduce conditions (5b,  c, d) to obtain 

cEhy)/dx = Qa(a + X)-&. 

Therefore the O(M-4) pressure and O(bM-4) transverse current in the down- 
stream core are given by 

hi1.') = h, - &(a + XI+, jiF1) = - &(a + XI-%, 
where h, is a constant reference pressure which will be determined by matching 
the upstream core solution. 

The functions:H and Y having been determined, the outer sublayer variables 
are now given by 

= a(a+X)-lexp[-t(a+X)-t], ~ i O 3 - 1 )  = -a&o.o)/at, 

hfJ) = h, - a(a + x)-*{* - exp [ - &a + X)-9]}, 

$, -1) = azh(1,l) lap, wi-30) = gaga + X)-8 exp [ - <(a + X)- t ] ,  
*(1,0) = ah(1.1) lag, j(l&o) = j f i o )  = 0 j31) = - ah(1.1) 2 lax. 

J X 2  2 

In  the inner sublayer, we now have 

Q p o '  = a(a+ X)- l ,  h y )  = h, + &(a+ X)-Q,  

and the boundary-value problem (5) governing $ f p o ) .  By combining solutions of 
the forward and backward heat equation, we obtain 

where 
$&O' + $~ l~O' (X ,y ,O)+a(a+X) -~[$*(+y)+$*( -y ) - c (a+X)] ,  

$*(X,  y, 6) = +<[+c2 +a + X + y] erfc [Q[(u + X + y)-4] - @-+ 

x (a+X+y)*[tf;2+a+X+y]exp[-tf12(a+X+y)-1]. 

The related variables are given by equations ( I  d, g, h) : 

This is essentially the boundary-layer solution for fully developed flow in a con- 
stant-area duct with the appropriate local scaling. 

Half of the total O(1) mass flux is carried by the O(bM4) velocity u.$O~-l) in the 
outer sublayer. This high-velocity jet is held against the side wall by a Lorentz 
force produced by an O(M-B) current flux in the negative x direction through the 
outer sublayer. This current flux is maintained by the O(b) currentj&?O), which is 
constant in the y direction. As X increases, the high-velocity layer spreads out 
in both the y and the [ directions, so that less current is needed to hold it against 
the wall, the surplus flowing across the core as jL2l). Since j!&O) is constant in y, 
part of the current flux is lost into the Hartmann layers at  each cross-section. This 
current flows into the Hartmann layers adjacent to the inner sublayer and then 
into the inner layer itself, where it is turned and fed back into the outer sublayer. 
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Side wall G at z= - 1 

FIGURE 4. Downstream current paths for 1 & b + M-4. 

A sketch of these current paths is shown in figure 4. Note that over an O(b-l) 
length of the duct, these currents represent a circulation of O(1M-S) current flux. 

In  the constant-area portion of the duct (x < 0) ,  the disturbance due to the 
divergence downstream is of O(M-d), the O( 1) variables being given by the fully 
developed solution. All O( 1) variables are zero except q Y o > O )  and u(O,O),  which are 
given by 

in the upstream core 4. Since the flow is symmetric in 2, we need only consider the 
upstream side layer 5 at z = - 1 ; there the O( 1) variables are 

$ p o '  = - z ,  u p o )  = 1 

The profile function $*(X ,  y, <) and the co-ordinate < are the same as for the 
downstream inner sublayer 3. 

The flow in the free shear layer 6 is determined independently a t  each z section 
by the local electric potential jump across the layer. Its structure is given by 

$ p o '  = - 1 *z[&% Y) + &> - Y ) l ,  
where = erfc (@(a+y)-&), 2 = M i x  

(see Part 3). The related variables are 

@ , O )  = - a+,p.O)/az, &1,-1) = a@O.O)/a& 6 

' (0  0 )  = a (0,O) %I) = - aS$(O,O)/a23 
326  6 3 3 u 6  $6 lay. 

h(61'1) = h - la-&, u&-l. -1) = ' ( 0  0 )  = 0 

There is no variation in the O(M-4) pressure across a free shear layer, so that 

0 3  3 Z B  
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The O(1) mass flux, carried by u:”~) in the upstream core, passes into the free 
shear layer, where it is divided in half and turned towards the side walls. Each 
of these jets, involving an O(M*) transverse velocity, is carrying half of hhe total 
mass flux as it enters one of the outer intersections 7. Since j2 O) is zero, the free 
leyer does not channel any O(M-4) current flux across the duct. 

In  the outer intersection 7 at z = - I, the x co-ordinate is stretched by 2 = iM4 x 
and the z co-ordinate is stretched by 5 = bM*(z+ 1). The solution is determined 
independently a t  each 6 section by the local electric potential jump, so that 

$ p o ’  = exp ( - ca-4 + Hi - exIJ ( -&-$)I [$@, Y) + $(a, - Y ) l ,  

@-I) = - a $ ‘ ” O ) p [ ,  &1,-1) = apO),laa jC0.0) = a#m’lay. 
and the related variables are 

7 7 ’ Y7 

The variables $’,-’) andjA;O) are zero while the others are given by 

h61.1) = h -&[I-  s exp ( - ta-a)], jg; O) = - u-1 exp ( - ca-*). 0 

Half of the O(1) mass flux flows from the free shear layer into the outer inter- 
section at z = - 1, where it is turned and fed into the downstream outer sublayer. 
The O(N-4) current flux in the negative-x direction inside the outer sublayer 
passes unchanged through the outer intersection and on into the upstream core 
a t  x = 0, z = - 1. The inner intersection 8 is a viscous subregion which satisfies 
the boundary conditions a t  the wall and matches the outer intersection as well 
as the upstream side layer and the downstream inner sublayer. The solution is 
easily obtained, but is of no particular interest here. 

The electrical circuit of the O(M-*) current flux is closed through a plane 
potential current flow in the upstream core. To determine this, we note that hpl )  
varies from h, + ju-4 at 6 = 0 to h, - 6a-i as E -+ 00. The upstream core sees the 
variation as a discontinuity in the boundary conditions on (the current function) 
hi191) at x = 0, z = - 1. If now the reference pressure h, is chosen so that hhlJ) = 0 
as x -+ - 00, i.e. 

h, = -$a-4, 

thenhi1S1)is a harmonic function of x and zwhich satisfies the boundary conditions 

as x+ -a for 1x1 < 1, 

at z = + l  for - a < x < O  
= 0 

and h&l,l)= -a-6 at x =  0 for 1.1 < I. 

The currents closing the circuit are then given by 

Y1.U = a p .  I)/&, 1) = - a@ l)pX. 3s6 4 

The solution can easily be obtained by conformal mapping, but its precise form 
is not important. 



492 J .  X. Walker and G .  X. X. Ludford 

4. Small slope: b = aM-* 
As b becomes comparable with M-4, the double expansion used in $ 3  collapses 

back into a single-parameter expansion in powers of M-4, but now the coefficient 
functions are the sums of all terms in each row of the double expansion, just as 
the coefficients in the single expansion for b = O( 1) were the sums of all terms in 
each column. Physically, as b approaches aM-4, the downstream outer sublayers 
for intermediate slope spread until they meet in the centre of the duct. As they 
spread these layers carry the O(1) mass flux and the O(M-*) current flux into 
the downstream core. 

The various subregions for this transitional stage (shown in figure 5) are the 
downstream core I, downstream side layers 3, upstream core 4, upstream side 
layers 5, free shear layer 6 and intersections 8. There are no subregions numbered 
2 or 7 because the downstream outer sublayers 2 and the outer intersections 7 of 
$ 3  have spread into the core and the free shear layer respectively. Table 1 still 
applies; note that a/ax = O(M-4) in the diverging portion of the duct (x > 0).  
The O( 1) electric potential and the O(M-4) pressure are written as power series 
in M-8: 

$4 = + M-B$4(1) + M - y )  + . . . , h = M-.th(l) + M-qP) + , . . . 
The transverse velocity w!j-l) in the free shear layer is the only O(M*) variable in 
the entire flow. 

In  the downstream core I, the substitution X = M-*x compresses the x 
co-ordinate so that all derivatives are order one. The core variables which satisfy 
the governing equations (1) are 

= ysz+!r, h p  = H ,  %lo) = -yasz/ax-a!rp., ~ f “  = G, 

vp) = y a2H/aX2 + 6, wp) = y a s l p x  + aypx - aH/az, 

Jzd ’(1 - - aH/az, j f j  = 0, j t j  = 8, jgj = fj 7 j(2) 21 - - -aH/aX,  

where sl, Y ,  H ,  G, 8,h and fj are integration functions of X and x .  Applying the 
Hartmann conditions, which are 
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aw ay aH a v  
(a+aX)-+a- = a-+- = 0. 

ax2 az ax 8.22 

Since the flow is symmetric in x ,  

Y? = - 9 sinh ( a ~ ( a  + ax)-*), H = 9 + 9 ( a  + ax)-* cash ( a ~ ( a  + ax)-&) ,  

where 9 ( X )  and 9 ( X )  will be determined by matching the downstream side 
layers 3. 

We need only consider the side layer at x = - 1, where the substitutions 
< = M4 (z  + 1) and X = M-*x are introduced in order to stretch the x co-ordinate 
and to compress the x co-ordinate. This layer does not carry any of the O(1) mass 
flux or the O(M-*) current flux, so that, by virture of the governing equations (l), 
several simple results follow immediately, namely, 

$Lo) = F s i n  [a(a + ax)-*], hi1) = 9 + P ( a  + ax)-* cosh [a(a + ax)-*], 

hi2) = hi2)(X, - 1) - a&F(a + aX)-l sinh [a(a + ax)-*], 

via) = 0, j$i = - a 9 ( a  + aX)-l sinh [a(a + ax)-*], 

wp) = (a + aX)-l d { 9 ( a  + a x )  sinh [a(a + ax)-*]}/ax.  

However, w!) must be zero at the wall, so that 

9 = c / (a  + a x )  sinh [.(a + ax)-.)], 

where the integration constant c is determined by the mass flux condition (2): 

UiO'(X, y, 2) a y  ax = 4c, SYf:.":,, 
so that c = a. 

The O(M-4) electric potential $il) satisfies the equation 

a2$p/ay2 = a4$i1)/ag4 

a$p)lay = a 2 $ p ) l a p  at ZJ = @+EX),  

and the boundary conditions 

$bl) = # ( X ,  y, - 1) - aa[(a + ax)-% coth [a(a + ax)-*] as 5 -+ co, 
and 

d B  
@(a + X)-8 coth [a(a + aX)-i])  at [ = 0. - 0 ,  -=---- ax ax 

a3$',) a$!) 
ac ac3 
-- 

Having determined $p), the related variables are found to be 

u ~ O )  = - a$p/a[, jLi) = a$p/ay,  

Integration of the governing equation over the semi-infinite strip 

IyI < a+aX, 0 < g <  00, 
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together with the boundary conditions and the continuity of uio) at the corners, 
gives an equation for 9 ( X ) ,  namely, 

a 9  d 
- = - (a  + aX)- l  a ((a  + ax)-* coth [a(a + aX)-B]}. d X  

This completes the solution in the downstream core 1 except for an integration 
constant, the reference pressure h,, which will be chosen so that hi1) is zero 
a s x +  -OO. 

itself can be constructed from heat-source solutions, as before: 

$t) = $P)(X,  y, - 1) + aa(a+ ax)-% coth [.(a + ax)-&] 
X [#*(aX,y,<)+$*(aX,  -Y, <)-6(a+EX)I, 

where $*(X, y, 6) is the profile function of 9 3 and $il ) (X,  y, - 1) is an integration 
function of X and y which plays no significant role in our first-order solution. 
j:;) is now given by 

j:;) = aa(a +ax)-* coth [a@ + ax)-&] - a3$c,l)/ag3. 
The flow in the free shear layer is once again determined independently at  

each z section, by the jump in $(O) across the layer. Since the O( 1)  variables in 
the upstream core are those for the fully developed solution, the structure of the 
free shear layer is determined by 

#Lo) = - z + $[4 - $(2, y) - $(a, - y)] [z - sinh (aza-B)/sinh (aa-$)I, 

where the profile function r$ and the co-ordinate 2 are as defined in 3 3. The other 
non-zero variables are 

up = -a$p)/az,  js) = a@)/ay, Z U - ~ )  = a $6 (0) 18% 

cash (am-*) = aa-1 sinh (aza-4) -- a3$L0) 

sinh(aa-4) ' sinh(aa-B) 823 * 
~2) . hi1) = ho+a-t 

The O( 1) mass flux passes through the core in both the constant-area portion 
(x < 0) and the diverging portion (x > 0 ) ,  in both of which the flow is constant 
in they direction. The upstream flow is also constant in the z direction, but the 
downstream flow varies like cosh (am-4). The O(M4) transverse velocity wl-1) 
in the free shear layer redistributes the mass flux in the z direction between these 
two different core flows. 

The non-uniform velocity distribution in the diverging portion is linked to 
the O(M-4) current&), which flows in the positive-x direction for z > 0 andin the 
negative-x direction for z < 0. Since a3&/1aa3 vanishes as 2 -f 5 00, there is no 
jump in O(M-4) normal current across the free shear layer and a plane potential 
current flow in the upstream core is needed to complete the electrical circuit. 
Choosing a reference pressure 

h, = - a-4 coth (aa-*) 

makes hi1) a harmonic function of x and x satisfying the boundary conditions 

ht1)=0 at =.= for -oo<x ,<O oras x - f - 0 0  for j z j ~ i  
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and 

hi1) = - a-*[cosh (aa-*) - cosh (aza-*)]/sinh (aa-4) at x = 0 for IzI < 1. 

The solution for hi]-) can easily be obtained by conformal mapping, but its precise 
form is not important. 

As a -+ 0, the free shear layer disappears, h(l) vanishes everywhere, the down- 
stream velocity distribution becomes uniform and the fully developed solution 
is recovered for all x. 

5. Extensions and remarks 
This analysis can be extended to ducts with diverging or converging side 

walls at z = & g(x) by following the procedure given in Part 3, with one minor 
modification for ducts with a small slope (54). Substituting x = x / g ( x )  into the 
downstream core solution given in $4 gives the corresponding solution for a 
similar duct with diverging side walls. 

The solutions presented in $5 3 and 4 can be extended to cover general, slowly 
varying, fully insulated, rectangular ducts. It is sufficient to consider a duct with 
walls at  z = 5 1 and at  y = +f(x), where I f ' ]  < 1 for all x. Por a portion where 
1 B 1 f 'I 9 M-4, the flow can be divided into a core, outer sublayers and inner 
sublayers, and the solution in each subregion can be obtained by resealing the 
solutions presented in $ 3  for x > 0. Locating the origin at the start of such a por- 
tion, we compress the x co-ordinate into 

X = f(x) -a, a = f(O), 

so that the slope of the duct with respect to X is 1.  If a double expansion in 
f'(x) and [ f ' ( ~ ) ] - ~ M 4  is then used, the results in $ 3 are recovered with b = f'(x). 
Walker (1970) reached the same conclusion by asymptotic analysis of the 
integro-differential equations governing the side layers in a duct with an 
arbitraryf(x) (see Part 3). 

In  any portion of the duct where f '  is of O(2M-3) the solution is given by the 
downstream solution presented in $4. Locating the origin at  the start of such 
a portion, we compress the x co-ordinate in X = M-ix and expand the solution 
as a power series in M-6 alone. The results of $ 4  are recovered with the sub- 
stitutions 

a-.f(O), (a+ccX) - f f ( x ) ,  a -+ H&f'(z) .  

The present study was principally concerned with posing the problem cor- 
rectly; solving it was simple compared with the analysis required in Part 3. 
The correct subdivision of the flow region and the correct expansions were not 
obvious at  the outset. For example, for an intermediate slope ($ 3), there might 
have been an upstream outer sublayer. There might also have been an outer free 
sublayer at  x = O+ where a/ax = O(bM4) or an intermediate downstream core 
(after region 6 and before region 1) with accompanying side layers where 
a/ax = 0(1), in one or the other of which the transverse redistribution of mass 
flux from the upstream core to the downstream outer sublayer was accomplished 
without the O(M&) velocitiesin the free shear layer 6. There are similar possibilities 
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for a small slope (8 4) which complicated the problem at the outset. Once the 
correct matched asymptotic expansion scheme is established, the analysis is 
much more straightforward than that needed in Part 3. The reason is that, for 
b = O( 1)) the side layer a t  z = - 1 not only must carry the O( I) mass flux but also 
must satisfy the no-slip boundary condition a t  the wall. However, when b < I, 
this layer splits into an outer sublayer which carries the flux and an inner sub- 
layer which takes care of the no-slip condition, thus decoupling the two 
phenomena. Mathematically, the difficulties in Part 3 arise because the boundary 
conditions a t  the side wall involve a/ax; but, since a/ax 4 1 here, these terms are 
lost and the analysis is simplified. 
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